논리학, 그 여섯 번째 이야기 | 여러 가지 추론 규칙 ( Various Inference Rules )  By 초코맛 도비

Language :

이 글은 언어로 작성되어 있습니다.
사용하실 언어를 선택하십시오.

This post is written in Language.
Select the language you want to use.

この文は言語で作成されています。
使用する言語を選択してください。


이번 글에서는 여러 가지 추론 규칙에 대해 다룰 것이다. 긴말하지 않고 바로 본론으로 들어가자.

 

Inference Rules

$\mathscr{B}$, $\mathscr{C}$, $\mathscr{D}$가 모두 wff일 때 다음은 모두 참이다.

1. 이중부정의 제거 (Double Negation Elimination; DNE)
$$\vdash \neg \neg \mathscr{B} \Rightarrow \mathscr{B}$$
2. 이중부정의 도입 (Double Negation Introduction; DNI)
$$\vdash \mathscr{B} \Rightarrow \neg \neg \mathscr{B}$$
3. 대우법칙 (Equivalence of Contrapositives; Contrapositives)
$$ \neg \mathscr{C} \Rightarrow \neg \mathscr{B} \vdash \mathscr{B} \Rightarrow \mathscr{C} $$
4. 가언적 삼단논법 (Hypothetical Syllogism; HS)
$$ \mathscr{B} \Rightarrow \mathscr{C}, \mathscr{C} \Rightarrow \mathscr{D} \vdash \mathscr{B} \Rightarrow \mathscr{D} $$
5. 선언적 삼단논법 (Disjunctive Syllogism; DS)
$$ \mathscr{B} \lor \mathscr{C}, \neg \mathscr{B} \vdash \mathscr{C} $$
6. 연언 소거 (Conjunction Elimination; CE)
$$ \mathscr{B} \land \mathscr{C} \vdash \mathscr{B} $$ $$ \mathscr{B} \land \mathscr{C} \vdash \mathscr{C} $$
7. 연언 도입 (Conjunction Introduction; CI)
$$ \mathscr{B}, \mathscr{C} \vdash \mathscr{B} \land \mathscr{C} $$
8. 선언 소거 (Disjunction Elimination; DE)
$$ \mathscr{B} \Rightarrow \mathscr{D}, \mathscr{C} \Rightarrow \mathscr{D}, \mathscr{B} \lor \mathscr{C} \vdash \mathscr{D} $$
9. 선언 도입 (Disjunction Introduction; DI)
$$ \mathscr{B} \vdash \mathscr{B} \lor \mathscr{C} \\ \mathscr{C} \vdash \mathscr{B} \lor \mathscr{C} $$
10. 전건 긍정 (Modus Ponens; MP)
$$ \mathscr{B} \Rightarrow \mathscr{C}, \mathscr{B} \vdash \mathscr{C} $$
11. 후건 부정 (Modus Tollens; MT)
$$ \mathscr{B} \Rightarrow \mathscr{C}, \neg \mathscr{C} \vdash \neg \mathscr{B} $$

 

Proof.

증명은 다음과 같다.

[1], [2] 이 둘은 이 글에서 증명하였다.

 

[3] 이는 이 글에서 증명하였다.

 

[4] 이는 이 글에서 증명하였다.

 

[5] $\mathscr{B} \lor \mathscr{C}$의 정의가 $\neg \mathscr{B} \Rightarrow \mathscr{C}$이므로 MP에 의해 자명하다.

 

[6] $\mathscr{B} \land \mathscr{C}$의 정의가 $\neg \left( \mathscr{B} \Rightarrow \neg \mathscr{C} \right)$이므로 $\mathscr{B} \land \mathscr{C} \vdash \mathscr{C}$임을 다음과 같이 증명할 수 있다.

$$ \begin{array}{rll} 1. & \neg \left( \mathscr{B} \Rightarrow \neg \mathscr{C} \right) & \text{Hyp} \\ 2. & \neg \mathscr{C} \Rightarrow \left( \mathscr{B} \Rightarrow \neg \mathscr{C} \right) & \href{https://chocobear.tistory.com/151}{\color{#006DD7}{\text{(A1)}}} \\ 3. & \neg \left( \mathscr{B} \Rightarrow \neg \mathscr{C} \right) \Rightarrow \neg \neg \mathscr{C} & \text{2, Contrapositive} \\ 4. & \neg \neg \mathscr{C} \Rightarrow \mathscr{C} & \text{DNE} \\ 5. & \neg \left( \mathscr{B} \Rightarrow \neg \mathscr{C} \right) \Rightarrow \mathscr{C} & \text{3, 4, HS} \\ \hline \therefore & \mathscr{C} & \text{1, 5, HS} \end{array} $$

따라서 $\mathscr{B} \land \mathscr{C} \vdash \mathscr{C}$이다.

이제 $\mathscr{B} \land \mathscr{C} \vdash \mathscr{B}$임을 보이자.

$$ \begin{array}{rll} 1. & \neg \left( \mathscr{B} \Rightarrow \neg \mathscr{C} \right) & \text{Hyp} \\ 2. & \left( \neg \neg \mathscr{C} \Rightarrow \neg \mathscr{B} \right) \Rightarrow \left( \mathscr{B} \Rightarrow \neg \mathscr{C} \right) & \text{Contrapositive} \\ 3. & \neg \neg \mathscr{C} \Rightarrow \mathscr{C} & \text{DNE} \\ 4. & \mathscr{C} \Rightarrow \neg \mathscr{B} \vdash \neg \neg \mathscr{C} \Rightarrow \neg \mathscr{B} & \text{3, HS} \\ 5. & \left( \mathscr{C} \Rightarrow \neg \mathscr{B} \right) \Rightarrow \left( \neg \neg \mathscr{C} \Rightarrow \neg \mathscr{B} \right) & \text{4, }\href{https://chocobear.tistory.com/152}{\color{#006DD7}{\text{Deduction Thm}}} \\ 6. & \left(\mathscr{C} \Rightarrow \neg \mathscr{B} \right) \Rightarrow \left( \mathscr{B} \Rightarrow \neg \mathscr{C} \right) & \text{2, 5, HS} \\ 7. & \neg \left( \mathscr{B} \Rightarrow \neg \mathscr{C} \right) \Rightarrow \neg \left( \mathscr{C} \Rightarrow \neg \mathscr{B} \right) & \text{6, Contrapositive} \\ 8. & \neg \left( \mathscr{C} \Rightarrow \neg \mathscr{B} \right) & \text{1, 7, HS} \\ \hline \therefore & \mathscr{B} & \neg \left( \mathscr{B} \Rightarrow \neg \mathscr{C} \right) \vdash \mathscr{C} \end{array} $$

따라서 $\mathscr{B} \land \mathscr{C} \vdash \mathscr{B}$이다.

$\blacksquare$

 

[7] $\mathscr{B}, \mathscr{C} \vdash \mathscr{B} \land \mathscr{C}$를 증명하기에 앞서, $\mathscr{B}, \mathscr{C}, \mathscr{B} \Rightarrow \neg \mathscr{C} \vdash \neg \left( \mathscr{B} \Rightarrow \mathscr{B} \right)$임을 보이자.

$$ \begin{array}{rll} 1. & \mathscr{B} & \text{Hyp} \\ 2. & \mathscr{B} \Rightarrow \neg \mathscr{C} & \text{Hyp} \\ 3. & \neg \mathscr{C} & \text{1, 2, MP} \\ 4. & \mathscr{C} & \text{Hyp} \\ 5. & \mathscr{C} \lor \neg \left( \mathscr{B} \Rightarrow \mathscr{B} \right) & \text{4, DI} \\ \hline \therefore & \neg \left( \mathscr{B} \Rightarrow \mathscr{B} \right) & \text{3, 5, DS} \end{array} $$

따라서 $\mathscr{B}, \mathscr{C}, \mathscr{B} \Rightarrow \neg \mathscr{C} \vdash \neg \left( \mathscr{B} \Rightarrow \mathscr{B} \right)$이다. 여기에 연역 정리를 적용하면, $\mathscr{B}, \mathscr{C} \vdash \left( \mathscr{B} \Rightarrow \neg \mathscr{C} \right) \Rightarrow \neg \left( \mathscr{B} \Rightarrow \mathscr{B} \right)$임을 알 수 있다. 이제 이 사실을 이용하여 $\mathscr{B}, \mathscr{C} \vdash \neg \left( \mathscr{B} \Rightarrow \neg \mathscr{C} \right)$임을 보이자.

$$ \begin{array}{rll} 1. & \left( \mathscr{B} \Rightarrow \neg \mathscr{C} \right) \Rightarrow \neg \left( \mathscr{B} \Rightarrow \mathscr{B} \right) & \text{Above} \\ 2. & \neg \neg \left( \mathscr{B} \Rightarrow \mathscr{B} \right) \Rightarrow \neg \left( \mathscr{B} \Rightarrow \neg \mathscr{C} \right) & \text{1, Contrapositive} \\ 3. & \left( \mathscr{B} \Rightarrow \mathscr{B} \right) \Rightarrow \neg \neg \left( \mathscr{B} \Rightarrow \mathscr{B} \right) & \text{DNI} \\ 4. & \left( \mathscr{B} \Rightarrow \mathscr{B} \right) \Rightarrow \neg \left( \mathscr{B} \Rightarrow \neg \mathscr{C} \right) & \text{2, 3, HS} \\ 5. & \mathscr{B} \Rightarrow \mathscr{B} & \href{https://chocobear.tistory.com/152}{\color{#006DD7}{\vdash \mathscr{B} \Rightarrow \mathscr{B}}} \\ \hline \therefore & \neg \left( \mathscr{B} \Rightarrow \mathscr{C} \right) & \text{4, 5, MP} \end{array} $$

따라서 $\mathscr{B}, \mathscr{C} \vdash \neg \left( \mathscr{B} \Rightarrow \neg \mathscr{C} \right)$이다. 이때, 증명과정에서 사용된 DI는 아래에서 증명할 것이며, 아래 증명에는 CI를 사용하지 않으므로 순환논증이 아님을 확인할 수 있다.

$\blacksquare$

 

[8] $\mathscr{B} \lor \mathscr{C}$가 $\neg \mathscr{B} \Rightarrow \mathscr{C}$이므로 $\mathscr{B} \Rightarrow \mathscr{D}, \mathscr{C} \Rightarrow \mathscr{D}, \neg \mathscr{B} \Rightarrow \mathscr{C} \vdash \mathscr{D}$임을 보이면 충분하다. 이는 다음과 같이 보일 수 있다.

$$ \begin{array}{rll} 1. & \mathscr{C} \Rightarrow \mathscr{D} & \text{Hyp} \\ 2. & \neg \mathscr{B} \Rightarrow \mathscr{C} & \text{Hyp} \\ 3. & \neg \mathscr{B} \Rightarrow \mathscr{D} & \text{1, 2, HS} \\ 4. & \neg \mathscr{D} \Rightarrow \neg \neg \mathscr{B} & \text{3, Contrapositive} \\ 5. & \neg \neg \mathscr{B} \Rightarrow \mathscr{B} & \text{DNE} \\ 6. & \neg \mathscr{D} \Rightarrow \mathscr{B} & \text{4, 5, HS} \\ 7. & \mathscr{B} \Rightarrow \mathscr{D} & \text{Hyp} \\ 8. & \neg \mathscr{D} \Rightarrow \mathscr{D} & \text{6, 7, HS} \\ 9. & \neg \mathscr{D} \Rightarrow \neg \mathscr{D} & \vdash \mathscr{B} \Rightarrow \mathscr{B} \\ 10. & \left( \neg \mathscr{D} \Rightarrow \neg \mathscr{D} \right) \Rightarrow \left( \left( \neg \mathscr{D} \Rightarrow \mathscr{D} \right) \Rightarrow \mathscr{D} \right) & \href{https://chocobear.tistory.com/151}{\color{#006DD7}{\text{(A3)}}} \\ 11. & \left( \neg \mathscr{D} \Rightarrow \mathscr{D} \right) \Rightarrow \mathscr{D} & \text{9, 10, HS} \\ \hline \therefore & \mathscr{D} & \text{8, 11, HS} \end{array} $$

따라서 $\mathscr{B} \Rightarrow \mathscr{D}, \mathscr{C} \Rightarrow \mathscr{D}, \mathscr{B} \lor \mathscr{C} \vdash \mathscr{D}$이다.

$\blacksquare$

 

[9] $\mathscr{B} \lor \mathscr{C}$의 정의가 $\neg \mathscr{B} \Rightarrow \mathscr{C}$이므로 $\mathscr{B} \vdash \mathscr{B} \lor \mathscr{C}$임을 다음과 같이 보일 수 있다.

$$ \begin{array}{rll} 1. & \mathscr{B} & \text{Hyp} \\ 2. & \mathscr{B} \Rightarrow \left( \neg \mathscr{C} \Rightarrow \mathscr{B} \right) & \text{(A1)} \\ 3. & \neg \mathscr{C} \Rightarrow \mathscr{B} & \text{1, 2, HS} \\ 4. & \neg \mathscr{B} \Rightarrow \neg \neg \mathscr{B} & \text{3, Contrapositive} \\ 5. & \neg \neg \mathscr{C} \Rightarrow \mathscr{C} & \text{DNE} \\ \hline \therefore & \neg \mathscr{B} \Rightarrow \mathscr{C} & \text{4, 5, HS} \end{array} $$

따라서 $\mathscr{B} \vdash \mathscr{B} \lor \mathscr{C}$이다. 이제 $\mathscr{C} \vdash \mathscr{B} \lor \mathscr{C}$임을 보이자. 

일단, $\mathscr{C}, \neg \mathscr{B} \vdash \mathscr{C}$임은 자명하다. 따라서 연역 정리에 의해 $\mathscr{C} \vdash \neg \mathscr{B} \Rightarrow \mathscr{C}$이다.

$\blacksquare$

 

[10] 이는 이 글에서 언급한 것과 같이 명제논리에서는 증명 없이 받아들인다.

 

[11] 이는 다음과 같이 증명할 수 있다.

$$ \begin{array}{rll} 1. & \mathscr{B} \Rightarrow \mathscr{C} & \text{Hyp} \\ 2. & \neg \mathscr{C} \Rightarrow \neg \mathscr{B} & \text{1, Contrapositive} \\ 3. & \neg \mathscr{C} & \text{Hyp} \\ \hline \therefore & \neg \mathscr{B} & \text{2, 3, MP} \end{array} $$

$\blacksquare$

 

앞으로 위의 추론규칙들은 자주 쓰일 것이다. 또한, 위의 추론규칙들을 통해 아래의 몇 가지 따름정리들을 얻을 수 있다.

 

Corollary 1.

$\mathscr{B}$, $\mathscr{C}$, $\mathscr{D}$가 wff라고 하면, 아래는 모두 참이다.

1. 배중률 (Law of Excluded Middle)
$$ \vdash \mathscr{B} \lor \neg \mathscr{B} $$
2. 논리합의 교환법칙 (Commutative Law of Disjunction)
$$ \mathscr{B} \lor \mathscr{C} \vdash \mathscr{C} \lor \mathscr{B} $$
3. 논리합의 결합법칙 (Associative Law of Disjunction)
$$ \left( \mathscr{B} \lor \mathscr{C} \right) \lor \mathscr{D} \vdash \mathscr{B} \lor \left( \mathscr{C} \lor \mathscr{D} \right) \\ \mathscr{B} \lor \left( \mathscr{C} \lor \mathscr{D} \right) \vdash \left( \mathscr{B} \lor \mathscr{C} \right) \lor \mathscr{D} $$
4. 논리곱의 교환법칙 (Commutative Law of Conjunction)
$$ \mathscr{B} \land \mathscr{C} \vdash \mathscr{C} \land \mathscr{B} $$
5. 논리곱의 결합법칙 (Associative Law of Conjunction)
$$ \left( \mathscr{B} \land \mathscr{C} \right) \land \mathscr{D} \vdash \mathscr{B} \land \left( \mathscr{C} \land \mathscr{D} \right) \\ \mathscr{B} \land \left( \mathscr{C} \land \mathscr{D} \right) \vdash \left( \mathscr{B} \land \mathscr{C} \right) \land \mathscr{D} $$
6. 분배법칙 (Distributive Law)
$$ \mathscr{B} \lor \left( \mathscr{C} \land \mathscr{D} \right) \vdash \left( \mathscr{B} \lor \mathscr{C} \right) \land \left( \mathscr{B} \lor \mathscr{D} \right) \\ \left( \mathscr{B} \lor \mathscr{C} \right) \land \left( \mathscr{B} \lor \mathscr{D} \right) \vdash \mathscr{B} \lor \left( \mathscr{C} \land \mathscr{D} \right) \\ \mathscr{B} \land \left( \mathscr{C} \lor \mathscr{D} \right) \vdash \left( \mathscr{B} \land \mathscr{C} \right) \lor \left( \mathscr{B} \land \mathscr{D} \right) \vdash \mathscr{B} \land \left( \mathscr{C} \lor \mathscr{D} \right) $$
7. 드 모르간의 법칙 (De Morgan's Laws)
$$ \neg \left( \mathscr{B} \land \mathscr{C} \right) \vdash \neg \mathscr{B} \lor \neg \mathscr{C} \\ \neg \left( \mathscr{B} \lor \mathscr{C} \right) \vdash \neg \mathscr{B} \land \neg \mathscr{C} $$
8. 폭발 원리 (Principle of Explosion; $\bot \text{E}$)
$$ \mathscr{B}, \neg \mathscr{B} \vdash \mathscr{C} $$
9. 공허 참 (Vacuosly Truth)
$$ \neg \mathscr{B} \vdash \mathscr{B} \Rightarrow \mathscr{C} $$

 

이에 대한 증명은 비교적 자명하므로 굳이 서술하지는 않겠다. 만약 명제논리에 익숙하지 않다면 연습문제 삼아 직접 증명해보는 것도 좋을 것이다. 또한, 논리합과 논리곱의 결합법칙으로부터 연산의 순서가 중요하지 않다는 사실을 알 수 있다. 따라서 3개 이상의 wff에 논리합 연산 또는 논리곱 연산을 적용할 때에는 $\mathscr{B}_1 \lor \mathscr{B}_2 \lor \cdots \lor \mathscr{B}_n$과 같이 나타내도 무방하다. 단, $\mathscr{B} \lor \mathscr{C} \land \mathscr{D}$와 같이 나타낼 수는 없음에 유의하라.

댓글()